Graph semi-supervised soft sensor modeling based on label propagation algorithm

Author:

Gao ShiweiORCID,Li TianzhenORCID,Dong Xiaohui

Abstract

Abstract Data-driven soft sensor modeling methods have become prevalent in the industry. Nonetheless, the complexity of industrial processes often leads to the absence or difficulty in obtaining key labeled data, and existing methods frequently fail to fully utilize the inherent correlations between variables. This paper proposes a novel graph semi-supervised soft sensor modeling method using the label propagation algorithm to address these issues. This method utilizes correlations within the data to assign pseudo-labels to unlabeled data reasonably and employs graph convolutional networks to capture spatial relationships between nodes. Additionally, by embedding a long short-term memory structure, the model can capture temporal dependencies of the data while focusing on spatial structures. Furthermore, the introduction of a residual structure enables the model to directly learn the differences between inputs and outputs, facilitating information transmission, and improving the model’s feature extraction ability. Experiments demonstrate the effectiveness of the method.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Gansu Province

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3