Dense velocity, pressure and Eulerian acceleration fields from single-instant scattered velocities through Navier–Stokes-based data assimilation

Author:

Mons VORCID,Marquet O,Leclaire B,Cornic P,Champagnat F

Abstract

Abstract In this study, a reconstruction procedure to infer full 3D instantaneous velocity and pressure fields from sparse velocity measurements is proposed, here focusing on the case of scattered data as provided by particle tracking velocimetry (PTV). A key characteristic of the present approach is that it only relies on single-instant velocity measurements, and does not require any time-resolved or acceleration information. It is based on a strong enforcement of the Navier–Stokes equations where the partial time derivative of the velocity field, namely Eulerian acceleration, is considered as a control vector to minimize the discrepancies between the single-instant measurements and the reconstructed flow. Eulerian acceleration is thus a byproduct of the present methodology in addition to the identification of the full velocity and pressure fields. The reconstruction performances of the proposed Navier–Stokes-based data-assimilation approach for single-instant velocity measurements (NS-DA-SIM) are assessed using a numerical dataset for the 3D flow past a cylinder. Comparisons with existing data assimilation methodologies allow to further illustrate the merits of the present approach. The latter is finally applied to the instantaneous reconstruction of an experimental air jet flow from volumetric PTV data, confirming its robustness and high efficacy.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference49 articles.

1. Tomographic particle image velocimetry;Elsinga;Exp. Fluids,2006

2. Double-frame 3D-PTV using a tomographic predictor;Fuchs;Exp. Fluids,2016

3. Double-frame tomographic PTV at high seeding densities;Cornic;Exp. Fluids,2020

4. PIV-based pressure measurement;van Oudheusden;Meas. Sci. Technol.,2013

5. Gappy data: to Krig or not to Krig?;Gunes;J. Comput. Phys.,2006

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3