Siamese multiscale residual feature fusion network for aero-engine bearing fault diagnosis under small-sample condition

Author:

Hou Zhao-Guo,Wang Hua-WeiORCID,Lv Shao-Lan,Xiong Ming-Lan,Peng Ke

Abstract

Abstract Implementing condition monitoring and fault diagnosis of aero-engine bearings is crucial to ensure that aircraft operate safely and reliably. In engineering practice, the fault data for aero-engine bearings are extremely limited. However, the traditional fault diagnosis methods have two shortcomings under extremely small sample conditions: (1) they have limited diagnostic performance and generalization ability, and (2) they do not mine fault information sufficiently or efficiently. This article proposes a Siamese multiscale residual feature fusion network (SMSRFFN) for aero-engine bearing fault diagnosis under small-sample conditions to overcome the weaknesses above. In the proposed SMSRFFN, the training samples are first paired according to the matching rules to realize the expansion of the sample size. Second, a multiscale residual feature extraction network (MSRFEN) is constructed to excavate the fault features of different scales and speed up the convergence speed of the network. Then, a multiscale attention mechanism feature fusion module (MSAMFFM) is designed to achieve efficient fusion of fault features at different scales. Finally, the distance of the input sample is measured based on the fused deep feature representation to identify the fault state of the aero-engine bearing. The proposed SMSRFFN is evaluated using three bearing fault data and also compared with some state-of-the-art small-sample diagnostic methods. The experimental results demonstrate the effectiveness and superiority of the proposed SMSRFFN in mining fault information and improving diagnosis accuracy under extremely small sample conditions.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3