Experimental study on dynamic characteristics of charged particles in vacuum arc

Author:

Liu ShanORCID,Yuan Zhao,Liu LimingORCID,Chen Lixue,Liu Xueliang,Li Qian,Pan Yuan

Abstract

Abstract The vacuum arc is essentially a process of evaporation, collision and ionization of metal materials to keep burning. Electron temperature and density are important parameters to describe vacuum arc plasma transport. This paper was based on the theory of continuous spectral radiation, combined with the principle of two-colorimetric temperature measurement, and realized 2D calculation and observation of electron temperature and density. The experimental platform for vacuum arc breaking and an optical image acquisition system were established to achieve synchronous acquisition of two wavelengths of arc by imaging separation method. On the basis of partial local thermodynamic equilibrium hypothesis, and obtained the 2D dynamic distribution of the electron temperature and density. The results showed that electron density decayed along the radial direction and the density near anode was lower in the axial direction. The 2D distribution trend of electron temperature was opposite to the density. Electron temperature had a little change and the electron density expands outward in different arcing times. With the increase of current amplitude, the peak value of electron density increased, and the electron density in the arc gap also increased. The measured results could reflect the formation and movement of microscopic particles at the initial diffusion stage.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental Study of Cathode Spots and Plasma Dynamic Characteristics Based on Electrode Grain Structure;2024 6th Asia Energy and Electrical Engineering Symposium (AEEES);2024-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3