Abstract
Abstract
The light attenuation underwater causes the actual underwater images to suffer from color cast, low contrast, and weak illumination. To address these issues, an effective fusion-based method is proposed, which realizes color correction (CC), brightness adjustment, contrast, and detail enhancement of underwater images. Concretely, we first design an adaptive CC method via dominant color channel judgment and lower color channel compensation. Then, we detect the brightness of each input image and propose a gamma correction function based on the gradient of the cumulative histogram to adjust the brightness of the low-light images. Subsequently, global histogram stretching and adaptive fractional differentiation techniques are employed to process the brightness-adjusted image, and then the global contrast-enhanced version and detail-enhanced version are generated respectively. To integrate the advantages of both versions, a channel fusion method based on the Lab color space is used to fuse the luminance and color of the two versions separately. The experimental results demonstrate the effectiveness of the proposed method in improving the color and illumination of underwater images, as well as enhancing the clarity of images. Moreover, the testing results on multiple datasets validate the excellent stability of this method.
Funder
State Key Laboratory
National Natural Science Foundation of China
General Program of National Natural Science Foundation of China
Shaanxi Fundamental Science Research project for Mathematics and Physics
Key Program of National Natural Science Foundation of China
Major International (Regional) Joint Research Project of National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献