Prediction of thermally induced failure for electronic equipment based on an artificial olfactory system

Author:

Ma DenglongORCID,Liu Yuan,Zheng Liangtian,Gao Jianmin,Gao Zhiyong,Zhang Zaoxiao

Abstract

Abstract The failure of electronic equipment causes serious consequences and even catastrophic fires. Abnormal thermal signals are one of the main characteristics of the failure of electronic equipment. Thus, a new method for recognizing and predicting the thermally induced failure states of electronic equipment was proposed, based on an artificial olfactory system (AOS). The AOS recognizes the state of the volatile components released during the early stages of thermally induced failure and uses it to predict the state of health of the electronic equipment. Some typical electronic devices, such as microcomputer units, electronic rectifiers, transformers, and battery modules, were tested with the AOS to recognize the failures indicated by abnormal thermal accumulation. Compared with infrared thermal imagers and gas analyzers, the PEN3 electronic nose was utilized to monitor the status of the devices under different thermal failure scenarios. It was found that infrared thermal imaging was only able to monitor the local surface temperature, and the air temperature in the device chamber changed slowly with the surface temperature of the electronic modules. However, the AOS was able to detect the abnormal change in the whole chamber. Linear discriminant analysis (LDA) and principal component analysis (PCA) were then adopted to investigate the features of thermally induced failure for different thermal states. The results showed that the models obtained both from LDA and PCA were able to distinguish the different states of the electronic devices. Furthermore, a support vector machine model was built, based on the AOS data, to recognize and predict the thermally induced failure processes. All the failure states of the electronic devices caused by thermal simulations were recognized successfully and the prediction accuracy was above 95%. Hence, the experimental results of this research proved that using the AOS, it is feasible to predict the thermally induced failure states of electronic equipment, and the failure of electronic devices can be forecast in advance, before the obvious temperature rise and smoke release. Moreover, the method proposed in this research can also be applied to the prediction of, and warning about, electrical fires, indoor fires, and other thermally induced accidents.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Shaanxi Province

Shaanxi Provincial Science and Technology Department

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3