Maximum Gpq–mean deconvolution for the impulsive fault feature enhancement of rolling bearing

Author:

Bao Huaiqian,Wang ChenxuORCID,Zhang ZongzhenORCID,Han BaokunORCID,Wang JinruiORCID

Abstract

Abstract The bearing fault signal is easily obscured by background noise and random shocks in the initial stage. The maximum Gpq–mean deconvolution (MGD) method is proposed to address the challenge of extracting fault feature signals in the presence of impact interference. The use of a nonlinear activation function in MGD enhances the distribution characteristics of the filtered signal. The proposed method adopts a new sparse measurement method, which enhances the sparse measurement capability and solves the problem of the difficulty in extracting periodic fault signals under impact. The superiority of the method in rolling bearing diagnosis is demonstrated through simulation and experimental analyses. In comparison with traditional methods, such as minimum entropy deconvolution (MED), optimal minimum entropy deconvolution adjustment, and maximum correlated kurtosis deconvolution, the proposed method in this paper significantly improves the ability of extracting bearing fault signals.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3