A multi-output fault diagnosis framework for hydraulic system using a CNN-SVM hierarchical learning strategy

Author:

Liang Na,Yuan Zhaohui,Kang Jian,Jiang Ruosong,Zhang Jianrui,Yu XiaojunORCID

Abstract

Abstract Achieving asymptotic and concurrent fault diagnosis in hydraulic system remains a challenging endeavor due to the inherent attributes of the hidden occurrence, simultaneous manifestation, coupling, and limited sample size. To address the above issues, this paper proposes a hierarchical multi-output fault detection and diagnosis framework, namely, HMDF, based on a hierarchical learning strategy to leverage an improved convolutional neural network (CNN) and support vector machine (SVM). Both a multi-channel CNN and a multi-branch CNN are employed to extract and downscale features collected by the sensors at diverse sampling frequencies first, and then, such features are subsequently subjected to classification using SVM. The hierarchical learning strategy enables the identification of different fault states, both at the component and the intra-component level. Additionally, a modified whale optimization algorithm is also utilized to optimize the classification process of SVM. Extensive experiments are conducted to test the proposed HMDF with the hydraulic system datasets. Results show that HMDF achieves a diagnostic accuracy of up to 98.9% for the dataset, surpassing traditional methods reliant on manual extraction of time–frequency features, and it also exhibits superior classification performances with a small sample size. The HMDF is expected to offer a generalized framework for the multi-output fault detection and diagnosis in hydraulic systems and other complex components.

Funder

National Natural Science Foundation of China

Crossing Research Project of Longdong University

Northwestern Polytechnical University Postgraduate Practice Innovation Fund

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3