HF-MSCN: a high frequency-multiscale cascade network for bearing fault diagnosis

Author:

Abduelhadi AlaelddenORCID,Liang HaopengORCID,Cao JieORCID,Chen PengORCID

Abstract

Abstract In the field of data-driven fault diagnosis (FD), deep learning methods have proven their excellent performance, especially when dealing with complex signals from rotating equipment such as bearings. However, fault features in vibration signals are often mixed with noise features and distributed at different frequency scales, posing challenges for effective feature extraction. In order to solve this problem, this paper proposes a high frequency-multiscale cascade network (HF-MSCN), which enhances the noise suppression and feature learning capability of the model by combining a high-frequency convolutional block (HFCB) with a multi-scale cascade block (MSCB). HFCB effectively suppresses high-frequency noise through wide convolutional layers and self-attention mechanisms while still retaining essential high-frequency fault signals. MSCB enhances the interaction between convolutional layers at different scales by cascading the layers at different scales and strengthens the model’s ability to capture subtle fault features, especially when processing periodic fault pulse signals. Finally, we investigate the internal functioning of the network using time–frequency analysis methods in signal processing to improve the interpretability of deep learning methods in FD applications and further verify the enhanced effect of HFCB and MSCB on feature extraction. We validate the effectiveness of HF-MSCN on the case western reserve university dataset as well as a self-constructed bearing composite fault dataset, and the experimental results demonstrate that the network exceeds the performance of six state-of-the-art fault diagnostic methods in high-noise environments.

Funder

Long yuan Young Talent Team Program in Gansu Province

National Key Research and Development Plan of China

National Natural Science Foundation of China

Youth Science and Technology Fund of Gansu Province

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3