Self-organizing maps for efficient classification of flow regimes from gamma densitometry time series in three-phase fluidized beds

Author:

Picabea JuliaORCID,Maestri MauricioORCID,Salierno GabrielORCID,Cassanello Miryan,De Blasio Cataldo,Cardona María Angélica,Hojman Daniel,Somacal Héctor

Abstract

Abstract The potential of artificial neural networks as a tool to classify and identify a change in the flow regime of a three-phase fluidized bed is studied. Particularly, the suitability of self-organizing maps (SOMs), unsupervised neural networks that visualize the data in a lower dimension, is evaluated. Statistical features of experimental time series determined in a three-phase (granulated carbon-air-water) fluidized bed are extracted as inputs to train the SOM. Photon-count time series are obtained along the fluidized bed vertical axis by gamma-densitometry at different operative conditions. Then, they are analyzed to determine the underlying flow regime indexes. When each input data is presented to the SOMs, a neuron is activated, giving a visual representation of the data. The resulting models show three different regions on the map for the homogenous, transition, and heterogeneous flow regimes. Once these regions are delimited, the map can quickly classify the equipment operating conditions. The ability of the SOMs to diagnose a flow transition is verified against visual observation and gas hold-up trends. The conclusions are tested for their sensitivity to alternative axial positions of the radiation source used for the densitometry.

Funder

Harry Schaumans Foundation

Suomen Kulttuurirahasto

Universidad de Buenos Aires

Consejo Nacional de Investigaciones Científicas y Técnicas

Högskolestiftelsen i Österbotten

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3