Steel surface defect classification using multi-resolution empirical mode decomposition and LBP

Author:

Samsudin Siti SalbiahORCID,Arof Hamzah,Harun Sulaiman Wadi,Wahab Ainuddin Wahid Abdul,Idris Mohamad Yamani Idna

Abstract

Abstract In this work we introduce Multi-Resolution Empirical Mode Decomposition (MREMD) as an image decomposition method that simplifies the implementation of Empirical Mode Decomposition (EMD) for bidimensional data. The proposed method is used in conjunction with the local binary pattern (LBP) to classify the images of six types of defects that can be found on the surface of rolled steel. The process starts by performing MREMD on the training images to obtain the first bidimensional intrinsic mode function (BIMF). Then features are extracted from the images and their first BIMF using the LBP. These features are used to train an artificial neural network (ANN) classifier. After training, given an unknown test image containing a defect, MREMD is applied on it to obtain its first BIMF. Next, LBP features are extracted from the image and its first BIMF and these features are fed to the trained ANN classifier to assign the image to one of the six defect classes. The classification process is carried out on 900 test images of the NEU database of six types of surface defects. The approach achieves an overall accuracy that is better than the result obtained using the LBP features alone. The main contribution of this paper is the introduction of multi resolution envelope interpolation using downsampling and upsampling with a fixed window size that reduces the execution time and decrease the sensitivity of the resulting BIMFs to the positions and number of extrema in the input image.

Funder

Institut Pengurusan dan Pemantauan Penyelidikan, Universiti Malaya

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3