Cepstral coefficients effectiveness for gunshot classifying

Author:

Svatos JakubORCID,Holub JanORCID

Abstract

Abstract This paper analyses the efficiency of various frequency cepstral coefficients (FCC) in a non-speech application, specifically in classifying acoustic impulse events-gunshots. There are various methods for such event identification available. The majority of these methods are based on time or frequency domain algorithms. However, both of these domains have their limitations and disadvantages. In this article, an FCC, combining the advantages of both frequency and time domains, is presented and analyzed. These originally speech features showed potential not only in speech-related applications but also in other acoustic applications. The comparison of the classification efficiency based on features obtained using four different FCC, namely mel-FCC (MFCC), inverse mel-frequency cepstral coefficients (IMFCC), linear-frequency cepstral coefficients (LFCC), and gammatone-frequency cepstral coefficients (GTCC) is presented. An optimal frame length for an FCC calculation is also explored. Various gunshots from short guns and rifle guns of different calibers and multiple acoustic impulse events, similar to the gunshots, to represent false alarms are used. More than 600 acoustic events records have been acquired and used for training and validation of two designed classifiers, support vector machine, and neural network. Accuracy, recall and Matthew’s correlation coefficient measure the classification success rate. The results reveal the superiority of GFCC to other analyzed methods.

Publisher

IOP Publishing

Reference51 articles.

1. Impulse acoustic event detection, classification, and localization system;Svatos;IEEE Trans. Instrum. Meas.,2023

2. Modeling and signal processing of acoustic gunshot recordings;Maher,2006

3. Acoustical characterization of gunshots;Maher,2007

4. Sensor fusion, sensitivity analysis and calibration in shooter localization systems;Akman;Sens. Actuators A,2018

5. Determination of the sound energy level of a gunshot and its applications in room acoustics;Deželak;Appl. Acoust.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3