Gaussian-kernel weighted neighborhood preserving embedding algorithm and its application in fault detection

Author:

Wang HanchengORCID,Li PengORCID,Ai MingxiORCID,Wu JiandeORCID,Yang ChuangyanORCID,Pan DeenORCID

Abstract

Abstract Fault detection in industrial processes is essential for enhancing production safety. Despite the application of the neighborhood preserving embedding (NPE) algorithm in fault detection as a manifold learning technique, a notable limitation exists-NPE overlooks local geometric structure, leading to suboptimal fault detection and occasional false alarms. This paper introduces the Gaussian kernel weighted NPE (KW-NPE) algorithm to address this challenge. Specifically designed for precise weight assignment in local structures, KW-NPE strategically employs the Gaussian kernel method to project the spatial neighborhood set and capture comprehensive local structural characteristics. The weight assignment, dependent on feature values, enhances the retention of intrinsic structure during dimensionality reduction. A novel objective function further augments this process.To assess performance, a comprehensive composite index is introduced in a case study, amalgamating the false alarm rate and fault detection rate. The effectiveness of the KW-NPE algorithm is demonstrated through extensive simulations and its application to the Tennessee Eastman process dataset, highlighting its superiority over conventional approaches.

Funder

Enterprise Joint Special Project for Application Basic Research of Yunnan province

Key Programme

National Natural Science Foundation of China

Yunnan University Graduate Research Innovation Fund Project

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic process monitoring based on parallel latent regressive models;Measurement Science and Technology;2024-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3