Integration of an isotropic microprobe and a microenvironment into a conventional CMM

Author:

Metz DORCID,Jantzen SORCID,Wessel D,Mies G,Lüdenbach J,Stein M,Kniel K,Dietzel AORCID

Abstract

Abstract This paper describes the experimental verification of the novel IMT-PTB microprobe combined with a uniquely designed microenvironment. The microprobe consists of three silicon-based parallelograms stacked orthogonally, which leads to high isotropy. The probe tip deflections are detected in 3D with the help of piezoresistors placed in the parallelograms. The microenvironment facilitates and improves the measurement of workpieces with sub-millimeter features. The new microprobe and the microenvironment were integrated into a commercial coordinate measuring machine (CMM). To evaluate the microprobe performance, PTB produced and calibrated three reference objects: a cube, a sphere, and a microgear measurement standard. The differences between the calibration values and the measurement results obtained by the microprobe were in the sub-micrometer range. Furthermore, the microprobe was compared with the standard probing system of the gear measuring machine by measuring the reference objects with identical parameters. The results show the excellent performance of the micro probing system, thereby extending the capability of the CMM for high-precision measurements of complex workpieces at the microscale.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference56 articles.

1. Probing systems in dimensional metrology;Weckenmann;CIRP Ann.–Manuf. Technol.,2004

2. Probing systems for dimensional micro- and nano-metrology;Weckenmann;Meas. Sci. Technol.,2006

3. State of the art of tactile micro coordinate metrology;Thalmann;Appl. Sci.,2016

4. Fully traceable miniature CMM with submicrometer uncertainty;Lewis;Proc. SPIE,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3