Abstract
Abstract
This study proposes an efficient rolling bearing fault diagnosis model of a hybrid neural network with a lightweight attention mechanism. Firstly, to achieve the low complexity of deep learning (DL) computation, data reduction and denoising are performed by sparse convolutional network (principal component analysis and improved complete ensemble empirical modal decomposition of adaptive noise), then processed data is imported to the hybrid neural network model with convolutional block attention module. The bi-directional long short-term memory and sparse convolutional networks are used in the backbone of the model. A lightweight, generalized attention mechanism is introduced to the last layer of the model for enhancing feature learning, which can further improve the diagnostic accuracy and efficiency. Compared with existing DL fault diagnosis models, In simulating the most realistic cross-conditions and cross-platform conditions, which leads to the random nature of fault generation and makes model diagnosis more complex, the proposed method still maintains less running time and excellent diagnostic accuracy. Finally, the experimental results fully prove that the model has reliable robust and efficient, and it achieves the best balance of diagnostic accuracy and diagnostic efficiency of the hybrid DL model.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangxi Province in China
Subject
Applied Mathematics,Instrumentation,Engineering (miscellaneous)
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献