In situ analysis of plastic flow near interfaces and free surfaces

Author:

Gupta DeepikaORCID,Udupa Anirudh,Viswanathan Koushik

Abstract

Abstract Spatio–temporal analysis of large strain plastic flow at or near interfaces and free surfaces is important for understanding practical problems in the cutting and sliding of metals. In this context, the use of direct in situ imaging, coupled with digital image correlation (DIC), has gained popularity in the past couple of decades since it does not require a priori assumptions about the nature of the deformation field. Moreover, the application of DIC to dynamically evolving interfaces remains challenging. Common techniques such as hierarchical grid refinement or post analysis interpolation are either spatially restrictive or can lead to significant data loss. In this work, we present an alternative experimental method -termed ensemble averaged DIC- that circumvents both these limitations by resorting to ensemble averaging of deformation fields over a number of related, yet independent, unstructured grids. The resulting fields are accurate to second order and are benchmarked against standard 1D and 2D test cases, before being applied to two plastic flow fields arising in deformation processing—frictional sliding and orthogonal machining. We benchmark our scheme against commercially available packages to demonstrate its enhanced ability to resolve plastic flow near interface and free surface. The scheme is shown to accurately estimate residual surface strains on the cut/processed material surface without any a priori information about the flow field.

Funder

Science and Engineering Research Board

Indian Institute of Science, Bangalore

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference38 articles.

1. Deformation processing;Backofen;Metall. Trans.,1973

2. Mechanics of the metal cutting process. 1. Orthogonal cutting and a type 2 chip;Merchant;J. Appl. Phys.,1945

3. Theory of formation of metal chips;Piispanen;J. Appl. Phys.,1948

4. The formation of saw-toothed chip in metal cutting;Nakayama,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3