A meticulous covariance adaptive Kalman filter for satellite attitude estimation

Author:

Xiao Yang,Jiang Tao,Fan Guo-WeiORCID,Zhang Liu,Gao Yu,Zhang Le

Abstract

Abstract Aiming at the problems of model errors, non-Gaussian noise and measurement anomaly in the spacecraft attitude estimation system, this article proposes an improved adaptive filtering method based on covariance matching, which solves the problems of simultaneous dynamics model error and measurement model error in the attitude estimation system, and at the same time, effectively reduces the effects of non-Gaussian noise and large outlier situations occurring in the vector measurement sensor. Firstly, an adaptive filtering algorithm based on the innovation sequence estimation covariance is investigated under the framework of multiplicative extended Kalman filter (MEKF), which is used to correct process noise covariance, then the Sage–Husa adaptive Kalman filtering (SHAKF) method is combined to correct the measurement noise covariance, and finally the meticulous covariance adaptive multiplicative extended Kalman filter is designed. The proposed algorithm uses both innovation and SHAKF methods to correct the two covariance matrices simultaneously. Several attitude estimation simulation scenarios are set up to simulate the proposed algorithm in the presence of model errors, non-Gaussian noise, and large outlier. The simulation results demonstrate that the proposed algorithm outperforms the conventional algorithms in terms of estimation accuracy and robustness.

Funder

National Natural Science Foundation of China

Science and Technology Department Fund of Jilin Province

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation of extended kalman filter for localization of ambulance robot;International Journal of Intelligent Robotics and Applications;2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3