Soft-sensing reconstruction of in-depth defect geometry from active IR-thermography data

Author:

Castellini PORCID,Martarelli MORCID,D’Antuono A,Paone NORCID

Abstract

Abstract This paper proposes a new approach for processing measured data from active Infra Red (IR) thermography, where a soft sensing algorithm is exploited for in depth defect reconstruction. This is achieved by propagating the information gathered at the wall surface to the inner layers. Correlating the experimental 2D measurements to a Finite Element (FE) model of the tested specimen it is possible to update the model with the measured data and change the geometry of the simulated inner defect, until the surface temperature distribution calculated corresponds to the measured one. Following that strategy, the unknown defect geometry can be determined. The method developed and presented in this paper consists of an optimization problem based on the minimization of the difference between the surface temperature distribution measured on the sample subjected to an active thermography test and the one resulting from the FE model. The optimization variables are the geometrical parameters (depth, width, thickness and position) characterizing the defect which will be fully determined at the complete convergence, within a given tolerance, of the optimization problem. The method includes also a preprocessing algorithm, based on the same experimental data and FE model, which allows to determine thermal and mechanical properties of the object under test, like surface emissivity, heat capacity and material conductivity and density, which are often unknown especially in the case of works of art. This soft-sensing procedure has been applied to a virtual experiment to estimate the accuracy of the reconstructed geometry and to a simulacrum of ancient fresco including defects realized on purpose.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3