An unsupervised bearing fault diagnosis based on deep subdomain adaptation under noise and variable load condition

Author:

Ghorvei MohammadrezaORCID,Kavianpour MohammadrezaORCID,Beheshti Mohammad THORCID,Ramezani AminORCID

Abstract

Abstract Deep learning-based approaches for diagnosing bearing faults have attracted considerable attention in the last years. However, in real-world applications, these methods face challenges. For proper training of these models, a considerable amount of labeled data are necessary, and due to limitations in industry, obtaining this amount of data may not be possible. Because of load variations, the distribution of training and test data may vary, which reduces the accuracy of the trained model for various working conditions. Furthermore, noise has a significant impact on bearing fault diagnosis performance in real-world industrial applications. This study introduced the deep subdomain adaptation convolutional neural network (DSACNN) method to overcome these challenges in real scenarios. The local maximum mean discrepancy (LMMD) method reduces the difference between each class distribution in the source and target domains. We validated our proposed method by CWRU bearing dataset under various loads and noise with different SNRs. The results show that DSACNN outperforms other comparative methods in anti-noise performance and reduction of domain distribution discrepancies.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3