Deep learning-assisted classification of site-resolved quantum gas microscope images

Author:

Picard Lewis R BORCID,Mark Manfred JORCID,Ferlaino Francesca,van Bijnen RickORCID

Abstract

Abstract We present a novel method for the analysis of quantum gas microscope images, which uses deep learning to improve the fidelity with which lattice sites can be classified as occupied or unoccupied. Our method is especially suited to addressing the case of imaging without continuous cooling, in which the accuracy of existing threshold-based reconstruction methods is limited by atom motion and low photon counts. We devise two neural network architectures which are both able to improve upon the fidelity of threshold-based methods, following training on large data sets of simulated images. We evaluate these methods on simulations of a free-space erbium quantum gas microscope, and a noncooled ytterbium microscope in which atoms are pinned in a deep lattice during imaging. In some conditions we see reductions of up to a factor of two in the reconstruction error rate, representing a significant step forward in our efforts to implement high fidelity noncooled site-resolved imaging.

Funder

Austrian Academy of Sciences

Austrian Science Fund

Deutsche Forschungsgemeinschaft

European Research Council Consolidator Grant

European Union’s Horizon 2020 research and innovation programme

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3