Classification of multi-type bearing fault features based on semi-supervised generative adversarial network (GAN)

Author:

Li XiaoORCID,Zhang Feng-LiangORCID

Abstract

Abstract Fault diagnosis is a crucial technology for ensuring the reliable and efficient operation of industrial systems. With the advancement of industrial informatization and intelligence, fault diagnosis methods have the trend shifting from traditional signal processing to deep learning. However, traditional deep learning models are not suitable for industrial scenarios with limited labeled data, imbalanced categories. To address these challenges, this paper proposes a novel approach based on semi-supervised generative adversarial networks (SGANs) to systematically study the fault diagnosis of rolling bearings in the case of unlabeled samples and sparsely labeled samples. In this work, the vibration time-domain vibration signal of the bearing is firstly transformed into a spectrum signal through the fast Fourier transform. This transformed signal is then fed into the GAN model to extract multi-layer sensitive features, providing a deeper understanding of the underlying fault characteristics. Subsequently, the SGAN method utilizes unsupervised learning via spectral clustering algorithms to automatically classify fault patterns in industrial equipment. Furthermore, it enhances semi-supervised learning by incorporating limited label information through softmax functions, effectively discerning the authenticity of unlabeled data. For the effectiveness of SGAN for bearing fault diagnosis, two diverse datasets are utilized including the widely-used Case Western Reserve University dataset and data acquired from South Ural State University. Compared to alternative models, the results underscore SGAN’s robustness, achieving high recognition accuracy and clustering performance. The proposed methodology contributes to the advancement of fault diagnosis technologies by combining unsupervised and semi-supervised learning techniques.

Funder

National Natural Science Foundation of China

Shenzhen Technology and Innovation Commission

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3