Abstract
Abstract
Emissivity is a quantity essential to consider when assessing the measurement uncertainty in non-contact temperature measurements. This paper presents a new instrument for measuring emissivity of opaque materials from 200 °C to 450 °C in the spectral range of 2.1 to 2.5 µm. These ranges are ideal for measuring the temperature of metals, such as aluminium, during manufacture or heat-treating processes. The instrument consists of a pair of hemispherical cups coated with Vantablack® and gold respectively, a custom designed radiation thermometer, and a hot plate. This instrument enables both the direct and the indirect methods for measuring emissivity of materials. Use of two identical cups allowed for quantitative analysis of the uncertainty of the instrument to determine the most suitable emissivity measurement range. The expanded uncertainty of the instrument was lower than 0.058 (k = 2) over the entire measuring temperature range. Studies were undertaken using different materials with emissivities ranging from 0.06 to 1. These included aluminium alloy 6082, stainless steel 304, and HiE-Coat 840M paint. Relative uncertainty analysis indicated that the indirect method was more accurate for measuring low-emissivity materials, whereas the direct method was more suitable for all other materials. Our instrument, with experimentally determined measurement uncertainty, aims to offer accurate emissivity references for use in radiation thermometry applications.
Funder
Engineering and Physical Sciences Research Council
Subject
Applied Mathematics,Instrumentation,Engineering (miscellaneous)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献