Machine learning shadowgraph for particle size and shape characterization

Author:

Li Jiaqi,Shao Siyao,Hong JiarongORCID

Abstract

Abstract Conventional image processing for a particle shadow image is usually time-consuming and suffers degraded image segmentation when dealing with images consisting of complex-shaped and clustered particles with varying backgrounds. In this paper, we introduce a robust learning-based method using a single convolution neural network for analyzing particle shadow images. Our approach employs a two-channel-output U-net model to generate a binary particle image and a particle centroid image. The binary particle image is subsequently segmented through a marker-controlled watershed approach with the particle centroid image as the marker image. The assessment of this method on both synthetic and experimental bubble images has exhibited a better performance compared to the state-of-art non-machine-learning method. The proposed machine learning shadow image processing approach provides a promising tool for real-time particle image analysis in industrial applications.

Funder

Office of Naval Research

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference30 articles.

1. Splitting touching cells based on concave points and ellipse fitting;Bai;Pattern Recognit.,2009

2. Deep neural networks segment neuronal membranes in electron microscopy images;Ciresan,2012

3. Segmentation of blood images using morphological operators;Di Rubeto,2000

4. HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation;Dolz;IEEE Trans. Med. Imaging,2018

5. PIV with LED: particle shadow velocimetry (PSV) technique;Estevadeordal;43rd AIAA Aerospace Sciences Meeting and Exhibit,2005

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3