Generic saturation-induced phase-error correction algorithm for phase-measuring profilometry

Author:

Wu Zebo,Lv Na,Tao Wei,Zhao HuiORCID

Abstract

Abstract Intensity saturation causes partial incorrect intensities in captured images, leading to obvious phase errors in high-dynamic-range phase-measuring profilometry. Most existing methods require numerous projected patterns or additional hardware equipment to retrieve the three-dimensional shape. This paper proposes a comprehensive saturation-induced phase-error correction method by combining an average-phase compensation method, applying four-step phase-shifting (PS) patterns, with a phase repair method employing a total variation minimization (TVM) model. The periodic characteristic of the saturation-induced phase error is analyzed. The phase error can be efficiently compensated by averaging the initial and auxiliary phase, which is calculated utilizing a set of PS patterns with a phase offset of π /4. Furthermore, a judgment condition is provided to detect invalid points in overexposed shiny areas where the initial calculated phases are wrong. The corrected phases are repaired utilizing the TVM model from the compensated phase information surrounding invalid points. Simulations and experiments show that the proposed method can simultaneously correct the phase in non-uniform, high-reflectivity scenes and shiny areas with high accuracy using relatively few images. The phase error is reduced by nearly 80%.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3