FDS-MOMEDA: optimization-blind deconvolution in finite high-dimensional spaces for extracting pulse signal in rolling bearing fault diagnosis

Author:

Zhang MengORCID

Abstract

Abstract Rolling bearing fault diagnosis is crucial for ensuring the safe and reliable operation of mechanical equipment. Detecting faults directly from measurement signals is challenging due to severe noise and interference. Blind deconvolution (BD), as a preferred method, effectively recovers periodic pulses from the measured vibration signals of faulty bearings. This study introduces a simulated annealing-based BD approach to enhance the pulse signal components reflecting faults in vibration signals measured on rolling bearings. This method iteratively searches for the optimal coordinates in a high-dimensional orthogonal optimization space, where the optimal coordinates reflect the combination of the inverse filter coefficients. Compared to the generalized spherical optimization space used in the ‘Optimization-Blind Deconvolution’ method in previous works, the proposed finite high-dimensional optimization space helps overcome the problem of inverse filter coefficient convergence, allowing for the design of inverse filters without limit of its shape. To better accommodate the cyclostationarity characteristics of bearing signal measured in reality, the proposed method employs a target vector that allows for uncertainty in pulse occurrence instants, thus overcomes challenges introduced by pseudo-periodic phenomena resulting from bearing slippage. Numerical simulations and experimental results on real bearing vibration signals confirm that the proposed method can design more flexible filters to enhance pulse-like patterns in signals, effectively utilize limited filter resources. Its capacity to tolerate inaccurate fault period estimates, high background noise, and pulse randomness enables it to effectively address vibration measurement signals in real-world scenarios.

Publisher

IOP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3