Conductivity measurement using 3D printed re-entrant cavity resonator

Author:

Mohammed Ali MusaORCID,Wang YiORCID,Skaik Talal,Li Sheng,Attallah Moataz

Abstract

Abstract A technique for measuring effective conductivity of conductor materials using 3D printed re-entrant cavity resonator is proposed. An analytical formula for the extraction of the effective conductivity has been derived in relation to energy stored in the volume of the cavity geometry. A method of resonant cavity characterisation of material based on microwave losses is utilised for the measurements. The approach offers a simplified analytical method and also supports the measurements of sample with arbitrary thickness. Samples produced from three different manufacturing processes of computer numerical control (CNC) and 3D printing, made of aluminium, copper and stainless steel were measured to demonstrate the method. The 3D printed and copper coated polymer sample is considered as reference material for the measurements. The measured results have shown that the copper coated polymer sample have similar conductivity with that CNC copper. This signifies the good finishing, low surface roughness and quality of copper coating used in 3D printed polymer device.

Funder

EPSRC

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3