Research on online anomaly detection methods for bearing degradation

Author:

Jin Shuowei,Xu HongchaoORCID,Lu Zhenlin,Yan Aiyun,Zhao Yuhang,He Huan

Abstract

Abstract In industrial applications, rolling bearings operate under conditions of high precision and high speed, and their physical and mechanical characteristics change with the increase in operating time. Traditional diagnostic methods struggle to adapt well to the changing characteristics of bearings for online anomaly detection. Therefore, this research proposes an online anomaly detection method for rolling bearings based on time-density-weighted incremental support vector data description (TISVDD). A classification strategy is proposed to prevent samples misclassification in the updating process. The Detection Boundary is established based on SVDD decision boundary to enhance the recognition of abnormal samples in the process of model updating. A dual-screening mechanism update strategy for support vectors is proposed. It involves establishing a preliminary screening mechanism based on the Elimination Boundary. On this basis, an in-depth screening mechanism based on time density weight is introduced by considering spatiotemporal characteristics of samples, enhancing the real-time performance of online anomaly detection for bearings. Building upon the fused dual-boundary SVDD, a TISVDD framework for online anomaly detection is proposed, enabling the detection model to dynamically update in response to data changes over time. To validate the effectiveness of the proposed method, experiments were conducted using the XJTU-SY bearing dataset and real-time datasets collected on an online hardware platform. The results demonstrate the effectiveness and superiority of the method in practical applications.

Funder

Research and Development Program of CASC

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic process monitoring based on parallel latent regressive models;Measurement Science and Technology;2024-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3