Towards in-situ water quantification via neutron imaging: insights from NeXT-Grenoble

Author:

Nemati ArashORCID,Lukić Bratislav,Tengattini Alessandro,Briffaut Matthieu,Séchet Philippe

Abstract

Abstract Neutron imaging has gained increasing attention in recent years. A notable domain is the in-situ study of flow and concentration of hydrogen-rich materials. This demands precise quantification of the evolving concentrations. Several implementations deviate from the ideal conditions that allow the direct applicability of the Beer–Lambert law to assess this concentration. The objective of this work is to address these deviations by applying both calibration and correction procedures to ensure and validate accurate quantitative measurements during 2D and 3D neutron imaging conducted at the cold neutron source at the NeXT instrument of the Institute Laue–Langevin, Grenoble, France. Linear attenuation coefficients and non-linear correlations have been proposed to measure the water concentration based on the sample-to-detector distance. Furthermore, the effectiveness of the black body grid correction method, introduced by Boillat et al (2018 Opt. Express 26 15769), is evaluated which accounts for spurious deviations arising from the scattering of neutrons from the sample and the surrounding environment. The applicability of the Beer–Lambert law without any data correction is found to be reasonable within limited equivalent thickness (e.g. below 4 mm of water) beyond which the correction algorithm proves highly effective in eliminating spurious effects. Notably, this correction method maintains its effectiveness even with transmissions below 1%. We examine here the impact of grid location and resolution with respect to sample heterogeneity.

Funder

Labex Tec21 Investissements d’avenir

Publisher

IOP Publishing

Reference51 articles.

1. Neutron imaging for geomechanics: a review;Tengattini;Geomech. Energy Environ.,2021

2. Performance characteristics of the tomography setup at the PSI NEUTRA thermal neutron radiography facility;Vontobel,2003

3. What comes NeXT? - high-speed neutron tomography at ILL;Tötzke;Opt. Express,2019

4. PSI ‘neutron microscope’ at ILL-D50 beamline-First results;Trtik;Mater. Res. Proc.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3