An effective determination of the minimum circumscribed circle and maximum inscribed circle using the subzone division approach

Author:

Huang JingzhiORCID,Yang RunzeORCID,Ge Haiqiao,Tan Jiubin

Abstract

Abstract Aiming to develop a more effective circularity evaluation method that satisfies the definition of a particular reference circle criterion, this paper proposes a strategy to determine the minimum circumscribed circle (MCC) and maximum inscribed circle (MIC) using the subzone division approach. The whole circumference zone space that encloses all the sampling data points is divided into different subzones to determine the target candidate feature points, which are used for constructing the MCC or MIC. The first feature point of the MCC/MIC is evaluated according to the farthest/nearest distance from the center of the least squares circle (LSC) within the whole circumference subzone. Subzone with a 120° central angle is designated in the direction of the first feature point that is mapped about the center of the LSC. The second candidate feature point is constrained and determined within this subzone. The third subzone, which contains the third feature point, is formed in the direction of the first and second feature points that are mapped about the center of the LSC. The mathematical model of the MCC or MIC is then constructed using these three feature points. Experimental examples (using five different datasets) and a comparison with previous studies demonstrate that the proposed method yields the exact solution for the MIC and MCC in only 1–2 iterations.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3