Determination of thermal conductivity, thermal diffusivity, and specific heat of liquids using a thermoelectric module

Author:

Mendiola-Curto Víctor,Beltrán-Pitarch BraulioORCID,García-Cañadas JorgeORCID

Abstract

Abstract Managing heat through working fluids is essential in many applications, as well as the development of new fluids with improved properties. Therefore, the characterization of their thermal properties, which is usually a laborious task, is necessary to design and model new thermal systems. In this study, we show the proof of concept of a new method capable of determining the thermal conductivity, thermal diffusivity, and specific heat capacity of liquids from a single simple measurement, provided their density is known (a property easy to measure). The method is based on the use of a thermoelectric module, which is soldered to a large copper block at one side (heat sink). At the other side, the liquid is added on top of the ceramic external layer of the module. By means of impedance spectroscopy measurements, it is demonstrated for three liquids (water, Luzar, and diethylene glycol) that their thermal properties of can be obtained. In order to do this, a new equivalent circuit was developed to account for the new boundary conditions of the measuring setup. Random and systematic errors were calculated and combined to obtain a total uncertainty <8.6% for the thermal conductivity, <6.3% for the thermal diffusivity, and <6.1% for the specific heat capacity. The reasonably low uncertainties obtained position the new method as a low-cost alternative able to provide the three key thermal properties of liquids from one single measurement and only using a single setup.

Funder

Horizon 2020 Framework Programme

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3