Detecting meso-damage and subsurface cracks in a hard rock using frequency-modulated thermal wave imaging (FMTWI)

Author:

Jaiswal MrityunjayORCID,Sebastian Resmi,Mulaveesala RavibabuORCID

Abstract

Abstract Mines, tunnels, and hillside roadways that are subjected to high levels of stress are prone to massive and violent occurrences of rock failures. It results in a multitude of irreversible consequences, including the loss of human lives. Nevertheless, preceding rock failures, the development of micro and macrocracks, which are sometimes not discernible on the surface, takes place. Subsurface cracks indicate the degradation of rock and can be employed as a means to anticipate occurrences of rock failures and bursts. Therefore, the utilization of subsurface imaging techniques for rocks facilitates the estimation of the true strength of the rock mass. Nevertheless, in many instances, rock masses are not easily reachable, posing difficulties for standard techniques such as ground-penetrating radar or computed tomography (CT) scan imaging, to identify the cracks. Hence, this research endeavours to explore the feasibility of employing frequency-modulated thermal wave imaging (FMTWI) for identifying subsurface cracks and their coalescence in hard rocks through the utilization of numerical simulation and experimental methods. A model was constructed using the finite element method wherein artificial cracks were intentionally introduced into a cylindrical granite specimen based on the CT scan data acquired during the meso-damage analysis. The thermograms obtained were subjected to pre-processing and post-processing techniques, and afterwards compared with the CT scan images. The FMTWI tests were conducted in the laboratory to calibrate and validate the simulation results. The findings derived from the analyses of temperature profiles and thermograms indicate that this particular technology is a promising one and offers several advantages in comparison to alternative methods for detecting micro- or macrocracks in deep mines and tunnels.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3