Finite element simulation for sensitivity measurement of a shear horizontal surface acoustic wave micro pressure sensor with a groove structure

Author:

Li YuanyuanORCID,Yang Jian,Jiang Bei,Cao Le,Shen Xiangyi,Shao Meng

Abstract

Abstract Shear horizontal surface acoustic wave (SH-SAW) sensors have great application potential due to their advantages of easy integration, miniaturization and suitability in liquid environments. In this paper, the finite element method is used to analyse a new SH-SAW micro pressure sensor, in which there are many groove structures along the direction of wave propagation on the delay path. We use the transient response simulation method to calculate and analyse the output voltage signal at the output interdigital transducer and surface average stress at the delay path of this new SH-SAW sensor, and its pressure sensitivity is analysed by uniformly applying an appropriate surface pressure on the resonant beam formed after grooving. The simulation results show that the surface average stress can be enhanced in a certain range of groove depth during the vibration of the groove structure. When the groove depth and width are set to 0.7 μm and 0.5 μm, respectively, the sensitivity of the SH-SAW sensor with a groove structure is four times higher than that of the traditional SH-SAW sensor. The increase of pressure sensitivity is the result of the increase of average stress caused by the groove structure. The new groove structure SH-SAW sensor provides a new basis for research on high-sensitivity micro-pressure sensors and lays a foundation for subsequent device design and manufacture.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3