A 3D printing assisted microfluidic absorbance-based measurement system for biological assay

Author:

Kumar Ankit,Nath Prathul,Das Neeladrisingha,Chatterjee Manisha,Roy Partha,Satapathi SoumitraORCID

Abstract

Abstract Development of rapid analytical systems utilizing 3D printing is an emerging area of interest with the potential to provide efficient solutions by integrating multidisciplinary technology without compromising the quality of the system. In this study we report the fabrication of a 3D printing assisted microfluidic based absorbance measurement system, leveraging 3D printing along with integrating miniature optical components for the accurate measurement of biological assays. The developed system is rapid, affordable, and compact, through set of computer-aided design models and fusion deposition modeling 3D printing along with relevant electronic circuitry involving optical components like surface mounting devices. The handheld device features a capacitive touchscreen display, programmed to seamlessly perform MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The device was employed for assessing the cell viability using Michigan cancer foundation-7 (MCF-7) cell lines over varying concentrations of tamoxifen, reciprocating the MTT assay analysis conducted by using spectrophotometer. The device achieved excellent results which upon comparison with the conventional spectrophotometer-based results have shown a correlation coefficient of 0.98. This compact and rapid absorbance measurement system holds significant potential for evaluating the cytotoxicity of drugs, and further development of innovative analytical devices.

Funder

SERB

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3