Abstract
Abstract
As an efficient and environment-friendly method, electrostatic separation has gradually replaced flotation methods in the separation of magnesite in recent years. In the process of triboelectrostatic separation, the mineral particles are tribocharged driven by the air flow, then the trajectory is shifted under the action of the electric field, so as to realize the separation. The useful mineral in magnesite is MgCO3, but the theoretical research related to the charge characteristics of MgCO3 is not sufficient. Particle image velocimetry (PIV), as an indirect measurement technique, is able to obtain the velocity field of the fluids from images. However, the particles moving in the air have the issues such as excessive speed and small particle size, which make the traditional PIV has low accuracy in estimating the motion of particles. In this paper, a high-speed camera is used to capture the motion trajectory of tribocharged MgCO3 particles in a parallel electric field. A new optical flow method LFN-en-A network based on LiteFlowNet-en network is proposed to compute the particle motion trajectory by combining the deep learning method with the traditional PIV, which realizes the displacement estimation of particles moving in the air. It ultimately realizes the calculation of the charge-to-mass ratio on single particles. Analyzing the accuracy of the LFN-en-A network’s estimation in the experiments, the estimation of LiteFlowNet-en was compared. Changing the shooting frame rate analyzes the optimal one required by the LFN-en-A network. Combining the estimation results of LFN-en-A to calculate the particle charge-to-mass ratio (Q/m), the Q/m of MgCO3 particle was analyzed by changing the experimental conditions in the process of particles’ tribocharging, which provided a new method for particle-to-charge ratio measurement.
Funder
Special Fund for the Central Government to Guide Local Technology Development
Youth Program of the National Natural Science Foundation of China