Bearing fault diagnosis using transfer learning and optimized deep belief network

Author:

Zhao HuiminORCID,Yang Xiaoxu,Chen Baojie,Chen Huayue,Deng WuORCID

Abstract

Abstract Bearing is an important component in mechanical equipment. Its main function is to support the rotating mechanical body and reduce the friction coefficient and axial load. In the actual operating environment, the bearings are affected by complex working conditions and other factors. Therefore, it is very difficult to effectively obtain data that meets the conditions of independent and identical distribution of training data and test data, which result in unsatisfactory fault diagnosis results. As a transfer learning method, joint distribution adaptive (JDA) can effectively solve the learning problem of inconsistent distribution of training data and test data. In this paper, a new bearing fault diagnosis method based on JDA and deep belief network (DBN) with improved sparrow search algorithm (CWTSSA), namely JACADN is proposed. In the JACADN, the JDA is employed to carry out feature transfer between the source domain samples and target domain samples, that is, the source domain samples and target domain samples are mapped into the same feature space by the kernel function. Then the maximum mean difference is used as the metric to reduce the joint distribution difference between the samples in the two domains. Aiming at the parameter selection of the DBN, an improved sparrow search algorithm (CWTSSA) with global optimization ability is used to optimize the parameters of the DBN in order to construct an optimized DBN model. The obtained source domain samples and target domain samples are divided into training set and test set, which are input the optimized DBN to construct a bearing fault diagnosis model for improving the diagnosis accuracy. The effectiveness of the proposed method is verified by vibration data of QPZZ-II rotating machinery. The experimental results show that the proposed JACADN method can effectively improve the fault diagnosis accuracy of rolling bearings under variable operating conditions.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3