Monitoring robot machine tool sate via neural ODE and BP-GA

Author:

Zhu Guangyi,Zeng XiORCID,Gong Zheng,Gao Zhuohan,Ji Renquan,Zeng Yisen,Wang Pei,Lu Congda

Abstract

Abstract Tool wear during robotic polishing affects material removal rates and surface roughness, leading to erratic and inconsistent polishing quality. Therefore, a method that can predict the tool state is needed to replace the robot end tool in time. In this paper, based on the cutting-edge neural ordinary differential equations (Neural ODE) and BP neural network optimization based on genetic algorithm (BP-GA), we propose a method to identify the tool state during robotic machining: firstly, a new training method of Neural ODE is proposed to avoid the model from falling into poor stationary points, and then on this basis, Neural ODE is utilized to predict the changes of vibration signals during robot machining; secondly, the predicted vibration signals of the tool are processed using variable modal decomposition method to extract the eigen kurtosis index and envelope entropy of the modal function as the vibration signal eigenvectors, and compare them with the traditional vibration signal eigenvectors. Finally, the predicted tool states were identified using BP-GA, and numerical experiments yielded an F1 score of 91.76% and an accuracy of 96.55% for model identification.

Funder

National Natural Science Foundation of China

Lingyan Program

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3