A comparison of two data analysis approaches for quantitative magnetic resonance imaging

Author:

Metzner SelmaORCID,Wübbeler GerdORCID,Kolbitsch Christoph,Elster Clemens

Abstract

Abstract Magnetic resonance imaging (MRI) is a medical imaging technique which is widely used in clinical routine. Standard imaging methods lead to so-called contrast-weighted images. The contrast arises from several tissue-related parameters such as the relaxation times T 1 and T 2. The aim in quantitative MRI (qMRI) is an estimation of these quantitative parameters. Magnetic resonance fingerprinting (MRF) is a promising technique in qMRI that allows for the simultaneous determination of multiple tissue-related parameters within a short acquisition time. The conventional MRF method utilizes an approximate inverse Fourier transformation for the highly undersampled data in the Fourier domain, leading to aliasing errors in the reconstructed magnetization courses. Computationally expensive statistical MRF modeling approaches overcome this issue by modeling the data directly in the Fourier domain. However, this leads to a non-convex and large-scale optimization task that is challenging to solve and requires expensive calculations. We compare two recent approaches, namely the conventional MRF method and a statistical MRF modeling approach based on Bayesian statistics in terms of their accuracy, reliability and computational costs. The comparison is carried out for simulated data with known ground truth for different signal-to-noise ratios, in the presence of errors in the physical model, and for several Fourier domain sampling schemes. It is demonstrated that a residual analysis can help to decide if the conventional MRF method is sufficient or if the complex Bayesian Fourier domain modeling approach can lead to a significant improvement.

Funder

European Association of National Metrology Institutes

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of Subsampling Schemes for Compressive Nano-FTIR Imaging;IEEE Transactions on Instrumentation and Measurement;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3