Abstract
Abstract
Blind deconvolution (BD) is an effective algorithm for enhancing the impulsive signature of rolling bearings. As a convex optimization problem, the existing BDs have poor optimization performance and cannot effectively enhance the impulsive signature excited by weak faults. Moreover, the existing BDs require manual derivation of the calculation process, which brings great inconvenience to the researcher’s personalized design of the maximization criterion. A new BD algorithm based on backward automatic differentiation is proposed, which is named backward automatic differentiation blind deconvolution (BADBD). The calculation process does not require manual derivation so a general solution of BDs based on different maximization criteria is realized. BADBD constructs multiple cascaded filters to filter the raw vibration signal, which makes up for the deficiency of single filter performance. The filter coefficients are determined by Adam algorithm, which improves the optimization performance of the proposed BADBD. BADBD is compared with classic BDs by synthesized and real vibration signals. The results reveal superior capability of BADBD to enhance the impulsive signature and the fault diagnosis performance is significantly better than the classic BDs.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,Instrumentation,Engineering (miscellaneous)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献