Robust CNN architecture for classification of reach and grasp actions from neural correlates: an edge device perspective

Author:

Sultan Hajrah,Ijaz Haris,Waris Asim,Mushtaq Shafaq,Mushtaq Khurram,Khan Niaz B,Khan Said Ghani,Tlija Mehdi,Iqbal JamshedORCID

Abstract

Abstract Brain–computer interfaces (BCIs) systems traditionally use machine learning (ML) algorithms that require extensive signal processing and feature extraction. Deep learning (DL)-based convolutional neural networks (CNNs) recently achieved state-of-the-art electroencephalogram (EEG) signal classification accuracy. CNN models are complex and computationally intensive, making them difficult to port to edge devices for mobile and efficient BCI systems. For addressing the problem, a lightweight CNN architecture for efficient EEG signal classification is proposed. In the proposed model, a combination of a convolution layer for spatial feature extraction from the signal and a separable convolution layer to extract spatial features from each channel. For evaluation, the performance of the proposed model along with the other three models from the literature referred to as EEGNet, DeepConvNet, and EffNet on two different embedded devices, the Nvidia Jetson Xavier NX and Jetson Nano. The results of the Multivariant 2-way ANOVA (MANOVA) show a significant difference between the accuracies of ML and the proposed model. In a comparison of DL models, the proposed models, EEGNet, DeepConvNet, and EffNet, achieved 92.44 ± 4.30, 90.76 ± 4.06, 92.89 ± 4.23, and 81.69 ± 4.22 average accuracy with standard deviation, respectively. In terms of inference time, the proposed model performs better as compared to other models on both the Nvidia Jetson Xavier NX and Jetson Nano, achieving 1.9 sec and 16.1 sec, respectively. In the case of power consumption, the proposed model shows significant values on MANOVA (p < 0.05) on Jetson Nano and Xavier. Results show that the proposed model provides improved classification results with less power consumption and inference time on embedded platforms.

Funder

Researchers Supporting Project, King Saud University, Riyadh, Saudi Arabia

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference34 articles.

1. WHO disability;World Health Organization,2022

2. Disability inclusion and accountability framework;Bank Group,2022

3. A neural predictor of cultural popularity;Berns;J. Consum. Psychol.,2012

4. Self-initiation of EEG-based communication in paralyzed patients;Kaiser

5. Basics of Brain Computer Interface;Ramadan,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3