Lightweight bearing fault diagnosis method based on cross-scale learning transformer under imbalanced data*

Author:

Zhao HuiminORCID,Li Peixi,Guo Aibin,Deng WuORCID

Abstract

Abstract Due to the limited amount of failure data in rolling bearing faults, traditional fault diagnosis models encounter challenges such as low diagnostic accuracy and efficiency when dealing with imbalanced data. Additionally, many fault diagnosis models are overly complex and demand high computational resources. To address these issues, a lightweight bearing fault diagnosis method based on cross-scale learnable transformer (CSLT) is proposed for imbalanced data. For difficult-to-classify samples, a learnable generalized focal loss function is defined. The learnable parameters are employed to increase its flexibility, it better addresses the issue of bearing fault diagnosis under imbalanced data conditions. Then, a multi-head broadcasted self-attention mechanism is designed by capturing critical local features of the signal through one-dimensional convolution operations, which not only improves feature extraction capability but also reduces computational complexity. Finally, a dynamic label prediction pruning module is developed to trim redundant labels, which helps in lightening the model and enhancing both feature extraction and diagnostic efficiency. The experimental results demonstrate that the proposed diagnosis method exhibits superior diagnostic precision and efficiency by comparing with other methods.

Funder

National Natural Science Foundation of China

Science and Technology Plan Projects of Tianjin

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3