Novel measurement method for full-field bridge strain and displacement with limited long-gauge strain sensors

Author:

Zhang QingqingORCID,Li RuixiaoORCID,Yuan Huijun

Abstract

Abstract In efforts to resolve the limitations of incomplete bridge measurements in accurately identifying structural parameters, this study introduces a novel approach for precise measurement of full-field bridge strain and displacement using a limited number of long-gauge fibre Bragg grating strain sensors. This method consists of two algorithms: a double reconstruction algorithm for strain reconstruction and an improved conjugate beam algorithm (ICBA) for displacement identification. The dual reconstruction algorithm exploits proper orthogonal decomposition to establish a comprehensive mapping relationship between units, thereby achieving precise strain estimation. This intricate mapping process enables the algorithm to accurately compute strain responses. By leveraging the derived full-field strain data, the ICBA effectively captures complete displacement responses. The conventional sensor placement configuration monitors only a limited number of units. To enhance full-field measurement accuracy, this method categorizes unmonitored units into two levels based on sensor placement. The double reconstruction algorithm then estimates the strain response sequentially, contributing to enhanced precision. Numerical simulations validate the proposed method (PM), which is demonstrated to be efficient and robust under various vehicle loads, impact loads, and noised levels. A physical experiment further demonstrates the efficacy of the PM in practice. The results underscore the potency of the PM as powerful theoretical and practical approach for full-field strain and displacement measurement.

Funder

Excellent Young Scientists Fund

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3