Particle detection by means of neural networks and synthetic training data refinement in defocusing particle tracking velocimetry

Author:

Dreisbach MaximilianORCID,Leister RobinORCID,Probst MatthiasORCID,Friederich PascalORCID,Stroh AlexanderORCID,Kriegseis JochenORCID

Abstract

Abstract The presented work addresses the problem of particle detection with neural networks (NNs) in defocusing particle tracking velocimetry. A novel approach based on synthetic training data refinement is introduced, with the scope of revising the well documented performance gap of synthetically trained NNs, applied to experimental recordings. In particular, synthetic particle image (PI) data is enriched with image features from the experimental recordings by means of deep learning through an unsupervised image-to-image translation. It is demonstrated that this refined synthetic training data enables the neural-network-based particle detection for a simultaneous increase in detection rate and reduction in the rate of false positives, beyond the capability of conventional detection algorithms. The potential for an increased accuracy in particle detection is revealed with NNs that utilise small scale image features, which further underlines the importance of representative training data. In addition, it is demonstrated that NNs are able to resolve overlapping PIs with a higher reliability and accuracy in comparison to conventional algorithms, suggesting the possibility of an increased seeding density in real experiments. A further finding is the robustness of NNs to inhomogeneous background illumination and aberration of the images, which opens up defocusing PTV for a wider range of possible applications. The successful application of synthetic training-data refinement advances the neural-network-based particle detection towards real world applicability and suggests the potential of a further performance gain from more suitable training data.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3