Methodologies for model parameterization of virtual CTs for measurement uncertainty estimation

Author:

Binder FelixORCID,Bircher Benjamin AORCID,Laquai René,Küng Alain,Bellon CarstenORCID,Meli FelixORCID,Deresch Andreas,Neuschaefer-Rube UlrichORCID,Hausotte TinoORCID

Abstract

Abstract X-ray computed tomography (XCT) is a fast-growing technology for dimensional measurements in industrial applications. However, traceable and efficient methods to determine measurement uncertainties are not available. Guidelines like the VDI/VDE 2630 Part 2.1 suggest at least 20 repetitions of a specific measurement task, which is not feasible for industrial standards. Simulation-based approaches to determine task specific measurement uncertainties are promising, but require closely adjusted model parameters and an integration of error sources like geometrical deviations during a measurement. Unfortunately, the development of an automated process to parameterize and integrate geometrical deviations into XCT models is still an open issue. In this work, the whole processing chain of dimensional XCT measurements is taken into account with focus on the issues and requirements to determine suitable parameters of geometrical deviations. Starting off with baseline simulations of different XCT systems, two approaches are investigated to determine and integrate geometrical deviations of reference measurements. The first approach tries to iteratively estimate geometric deviation parameter values to match the characteristics of the missing error sources. The second approach estimates those values based on radiographs of a known calibrated reference object. In contrast to prior work both approaches only use a condensed set of parameters to map geometric deviations. In case of the iterative approach, some major issues regarding unhandled directional dependencies have been identified and discussed. Whereas the radiographic method resulted in task specific expanded measurements uncertainties below one micrometre even for bi-directional features, which is a step closer towards a true digital twin for uncertainty estimations in dimensional XCT.

Funder

European Association of National Metrology Institutes

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Reference33 articles.

1. VDI/VDE 2630 Part 2.1—computed tomography in dimensional measurement—determination of the uncertainty of measurement and the test process suitability of coordinate measurement systems with XCT sensors,2015

2. Evaluation of measurement data—supplement 1 to the “guide to the expression of uncertainty in measurement,2008

3. Multi-sensor metrology for microparts in innovative industrial products

4. Numerical measurement uncertainty determination for dimensional measurements of microparts with XCT;Helmecke,2016

5. 17IND08 AdvanCT—advanced computed tomography for dimensional and surface measurements in industry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3