A simultaneous measurement method for multi-directional galloping of iced bundled conductors and its application in spatial galloping behavior

Author:

Cui FujiangORCID,Liu Peng,Wang Han,Li Zhiqiang,Xiang Jixin,Xu Jifeng,Ren He

Abstract

Abstract The theoretical results indicate that iced bundled conductors experience spatial galloping due to wind-induced vibration, involving in-plane, out-of-plane, and torsional movements. To better understand the dynamic response of this behavior from an experimental perspective, an innovative experimental method has been proposed. The method can simultaneously measure the in-plane, out-of-plane, and torsional vibration signals of iced bundled conductors’ galloping. A testing system was established, and the method is applied in the galloping experiment of continuous iced bundled conductors, validating some theoretical results. This paper describes the construction of a wide-aperture, low-speed wind tunnel suitable for testing the galloping of continuous iced bundled conductors. A ‘cut-bury-glue’ method was proposed to create a model of continuous iced bundled conductors effectively, along with a method for connecting subconductors to improve experimental precision. The tests utilized laser displacement sensors and wireless posture sensors, considering the installation and data collection characteristics of the sensors. Through signal conversion, error correction, and other technical methods, simultaneous measurement of in-plane, out-of-plane, and torsional vibration signals was achieved. The spatial galloping behavior, changing with wind speed, exhibits limited-amplitude and synchronous characteristics. The participation of different modes shows elliptical orbital motion in single-mode galloping and ‘8’ shaped orbital motion in coupled-mode galloping. These results are consistent with previous theoretical research, offering a new approach to studying iced bundled conductors’ galloping.

Funder

Foundation Research (Free Exploration) Youth Program in Shanxi

Major Scientific and Technological Special Project in Shanxi Province

Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference31 articles.

1. Transmission line reference book: wind-induced conductor motion;Doocy,1979

2. Conductor vibration due to sleet;Hartog;Trans. Am. Inst. Electr. Eng.,1932

3. Conductor galloping part II—torsional mechanism;Nigol;IEEE Trans. Power Appar. Syst.,1981

4. Inertially coupled galloping of iced conductors;Yu;J. Appl. Mech.,1992

5. Stability mechanism of conductor galloping and its application on transmission line;You;Electr. Equip.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3