Analyzing the effectiveness of MEMS sensor and IoT in predicting wave height using machine learning models

Author:

Mishra Jai PrakashORCID,Singh KulwantORCID,Chaudhary HimanshuORCID

Abstract

Abstract Wave height is a critical consideration in the planning and execution of maritime projects. Wave height forecasting methods include numerical and machine learning (ML) techniques. The traditional process involves using numerical wave prediction models, which are very successful but are highly complex as they require adequate information on nonlinear wind–wave and wave–wave interactions, such as the wave energy-balance equation. In contrast, ML techniques can predict wave height without prior knowledge of the above-mentioned complex interactions. This research aims to predict wave height using micro-electromechanical systems (MEMS), internet of things (IoTs), and ML-based approaches. A floating buoy is developed using a MEMS inertial measurement unit and an IoT microcontroller. An experiment is conducted in which the developed buoy is subjected to different wave heights in real time. The changes in three-axis acceleration and three-axis gyroscope signals are acquired by a computer via IoT. These signals are analyzed using ML-based classification models to accurately predict wave height. The obtained validation accuracy of the ML models K-NN (K-nearest neighbor), support vector machine, and the bagged tree is 0.9906, 0.9368, and 0.9887 respectively, which indicates that MEMS and IoT can be used to accurately classify and predict wave heights in real-time.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3