Infrared pattern based method for inspecting multi-nozzle spraying tools

Author:

Schulz FlorianORCID,Reincke Franziska,Beyrau FrankORCID

Abstract

Abstract Multi-nozzle spraying tools are applied in numerous industrial applications, one of the most common being die-casting. To ensure the quality of a cast product and to avoid production downtimes proper functioning is required, e.g. in terms of spray targeting, mass flow, or reproducibility. To enable regular functional controls of a spraying tool, we have developed a specific measuring principle based on monitoring the spray impact on a heated plate using infrared thermography. In this paper, the performance of the developed measuring principle is examined. The study is performed with a typical spraying tool from foundries, it has nine external mixing air–water nozzles, which are freely adjustable in their orientation. During an injection, the spray impacts a heated plate positioned in front of the spraying tool and creates a wetting pattern that is individual to each spraying tool, like a fingerprint. The recorded cooling pattern can be used to determine the position of the individual spray impact areas, the size of the spray impact areas, and the intensity of the cooling. Based on these parameters, conclusions can be drawn about the functionality of the water-bearing lines and the air-bearing lines—as well as the correct alignment of the individual nozzles. The result shows that the presented measuring principle leads to very high precision and reproducibility of the evaluated parameters. Thus, the developed measuring system enables detailed functional tests of complex spraying tools.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3