Abstract
Abstract
Adaptive sampling strategies in PIV have been shown to efficiently combine the need for limited user-dependence with increased performances in terms of spatial resolution and computational effort, thus rendering such approaches of great interest. The allocation of correlation windows across the spatial image domain is dependent on the interpretation of an underlying objective function, and the distribution of windows accordingly. It is important that such allocation is computationally efficient, robust to changing objective functions and conditions, and conducive to high quality sampling. In this paper, an alternative sample distribution method, based on adaptive incremental stippling, is presented and shown to combine the speed of PDF-based methods with the quality of ‘ideal’ spring-force methods. Case-dependent parameter tuning is no longer necessary, thus improving robustness. In addition, an algorithm to adaptively size initial correlation windows is proposed to further minimise user dependence.
Funder
Engineering and Physical Sciences Research Council
Subject
Applied Mathematics,Instrumentation,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献