Abstract
Abstract
True stress-true strain curves are fundamental for designing and analyzing structures such as fusion reactors. These curves are typically obtained by conducting tensile tests on round bar specimens. However, due to material dimension limitations, plate specimens are sometimes used instead of round bar specimens. Obtaining true stress-true strain curves experimentally from plate specimens can be challenging. To address this challenge, this study aims to obtain true stress-true strain curves of miniature plate specimens using both analytical and experimental methods. The analytical method involved inverse finite element method (FEM), while the experimental method utilized real-time measurement of the minimum cross-sectional area and radius of curvature of a miniature plate specimen with a high-speed laser profiler. Comparing the true stresses obtained from the analytical and experimental methods, we found that the difference was typically within 5%. These findings suggest that inverse FEM and laser profilometry are effective methods for determining the true stress-true strain of miniature plate specimens.
Subject
Applied Mathematics,Instrumentation,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献