Depth detection of spar cap defects in large-scale wind turbine blades based on a 3D heat conduction model using step heating infrared thermography

Author:

Zhang X YORCID,Zhou B,Li H,Xin W

Abstract

Abstract The defects dispersed in a spar cap often lead to the failure of large-scale wind turbine blades. To predict the residual service life of the blade and make the repair, it is necessary to detect the depth of spar cap defects. Step-heating thermography (SHT) is a common infrared technique in this domain. However, the existing methods of SHT on defect depth detection are generally based on 1D models, which are unable to accurately detect the depth of spar cap defects due to ignoring material anisotropy and in-plane heat flow. To improve the depth detection accuracy of spar cap defects, a 3D model based on the theory of heat transfer is established by using the equivalent source method (ESM), and a defect depth criterion is proposed based on the analytical solution of the heat conduction equation. The modeling process is as follows. The heat conduction model of SHT was established by ESM. Then, coordinate transformation, variables separation, and Laplace transformation were utilized to solve the 3D heat conduction equation. A defect depth criterion was proposed based on emerging contrast Cr. A glass fiber reinforced plastic composite plate containing 12 square flat-bottom holes with different sizes and depths was manufactured to represent a spar cap with large thermal resistance defects, such as delamination and cracks. The experimental results demonstrate the validity of the 3D model. Then, the model was applied to an on-site SHT test of a 1.5 MW wind turbine blade. The test results prove that the depth detection accuracy of spar cap defects can be significantly improved by using the 3D model. In addition, by using an improved principle component analysis (PCA) method containing a contrast enhancement factor, artifacts can be reduced and the recognition time of defects can be shortened. The 3D model provides a tool for detecting the depth of deep-lying defects in a thick composite structure, and the SHT technology is optimized by improved PCA.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3