Non-ferromagnetic thin metal micron-sized defect detection system based on a coherent accumulation-difference method

Author:

Wei BingkunORCID,Chen Chen,Liu Runcong,Yang JinlingORCID,Wang Xiaodong

Abstract

Abstract Copper and aluminum foils serve as predominant materials in fluid collectors, and defects within them can significantly impact the electrochemical performance of cells. However, existing methods for detecting defects within non-ferromagnetic thin metals, such as copper and aluminum foils, have several limitations. This study aims to address the need for detecting micrometer-scale defects on 0.1 mm copper foils, aligning with industrial field requirements. We devised an inspection device based on the induced magnetic field detection principle and explored the impact of copper foil undulations on micrometer-scale defect detection using COMSOL modeling. Subsequently, we introduced a coherent cumulative-differential algorithm to effectively mitigate the influences of circuit noise and sampling heave noise on defect signals. Consequently, the signal-to-noise ratios of 100- and 200-micron defect signals were significantly improved by 157% and 234%, respectively. This approach shows promise for detecting micrometer-scale defects in non-ferromagnetic thin metals and lays a robust foundation for future defect identification and inversion endeavors.

Funder

Huairou Science City Achievements Implementation Special Project

Equipment Development Project of Chinese Academy of Sciences

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3